Contenido principal del artículo

Juan Daniel García-Villabrille
Unidade de Xestión Forestal Sostible. Departamento de IngenieríaAgroforestal. Escuela Politécnica Superior (Universidad deSantiago de Compostela)
España
https://orcid.org/0000-0002-5760-9461
Felipe Crecente-Campo
Unidade de Xestión Forestal Sostible. Departamento de Ingeniería Agroforestal. Escuela Politécnica Superior (Universidad de Santiago de Compostela)
España
Ulises Diéguez-Aranda
Unidade de Xestión Forestal Sostible. Departamento de IngenieríaAgroforestal. Escuela Politécnica Superior (Universidad deSantiago de Compostela)
España
https://orcid.org/0000-0002-4640-6714
Alberto Rojo-Alboreca
Unidade de Xestión Forestal Sostible. Departamento de IngenieríaAgroforestal. Escuela Politécnica Superior (Universidad deSantiago de Compostela)
España
https://orcid.org/0000-0002-8884-4317
César Pérez-Cruzado
Forest Inventory and Remote Sensing. Faculty of Forest Sciencesand Forest Ecology. Burckhardt-Institute (Georg-August-UniversityGöttingen
Alemania
https://orcid.org/0000-0002-9878-7678
Roque Rodríguez-Soalleiro
Unidade de Xestión Forestal Sostible. Departamento deProducción Vegetal. Escuela Politécnica Superior (Universidad deSantiago de Compostela
España
https://orcid.org/0000-0001-6914-4748
Núm. 10 (2014), Artículos originales
DOI: https://doi.org/10.15304/rr.id3322
Recibido: 13-05-2016 Aceptado: 13-05-2016
Derechos de autoría Cómo citar

Resumen

Northwestern Spain is one of the most productive forest areas in Europe, being Eucalyptus globulus Labill. the most important species in the area. Stands (pure and mixed) of the species cover more than 400,000 ha, and almost four million cubic metres of timber were produced annually between 2008 and 2012. In this paper we present estimations of total aboveground biomass and the corresponding carbon content in Eucalyptus globulus plantations in Galicia, as useful information for further analysis on carbon sequestration balance. We developed several easy-to-use biomass equations, using data collected from cut trees across Galicia, and these were applied to data from the Third (1997) and Fourth (2011) National Forest Inventories in the region. The fitted model with diameter and height as independent variables showed the best estimates (R2 Adj = 0.9965, RMSE = 6.28). Estimations of current (2011) total aboveground biomass was 34.8 Mt and for the carbon was 15.7 Mt.
Citado por

Detalles del artículo

Referencias

Alvarez González, J. G., Balboa, M. A., Merino, A. & Rodríguez Soalleiro, R. (2005). Estimación de la biomasa arbórea de Eucalyptus globulus y Pinus pinaster en Galicia. Recursos Rurais. 1, 1: 21-30.

António, N., Tomé, M., Tomé, J., Soares, P. & Fontes, L. (2007). Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Canadian Journal of Forest Research. 37: 895-906.

Anuario estadística Forestal. (2010). Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). 100 pp. Madrid.

http://www.magrama.gob.es/es/biodiversidad/estadisticas/fo restal_anuarios_todos.aspx/. Accesed 13 March 2013.

Bi, H., Turner, J. & Lamber, M. J. (2000). Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees. 18: 467-479.

Brown, S. (2002). Measuring carbon in forests, current status and future challenges. Environmental Pollution. 116: 363-372.

Brañas, J., González-Río, F., Rodríguez-Soalleiro, R. & Merino, A. (2000). Biomasa maderable y no maderable en plantaciones de eucalipto. Cuantificación y estimación. Revista CIS-Madera. 4: 72-75.

Canadell, J. G. & Raupach, M. R. (2008). Managing forests for climate change mitigation. Science, 320, 5882: 14561457. Chippendale, G. M. (1988). Eucalyptus, Angophora (Myrtaceae). Flora of Australia 19. Australian Government Publishing Service, Canberra. 543 p.

Confemadera. (2013). Resultados Industria de la Madera de Galicia 2012, 2011, 2010. http://confemaderagalicia.es/. Accesed 11 March 2013.

Crow, T, R. (1978). Common regressions to estimate tree biomass in tropical stands. Forest Science. 24: 110-114.

De la Lama, G. (1976). Atlas del eucalipto. Tomo I: Información y ecología. INIA, ICONA. Sevilla. 68 p.

FAO 2005. Global Forest Resources Assessment 2005 Food and Agriculural Organization of the United Nations (FAO), Rome, Italy.

Iglesias-Trabado, G., Carballeira-Tenreiro, R. & FolgueiraLozano, J. (2009). Eucalyptus universalis; Global cultivated Eucalyptus forests Map. Version 1.2. In: GIT Forestry Consulting’s Eucalyptologics: Information resources on Eucalyptus cultivation worldwide. http://www.gitforestry.com. Accessed 19 October 2009.

Jones, P. & Moberg, A. (2003). Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. Journal of Climate. 16, 2: 206-223.

Ketterings, Q. M., Coe, R., Van Noordwijk, V., Ambagau, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management. 146: 199-209.

Landsberg, J.J., and Waring, R.H. 1997. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance, and partitioning. For. Ecol. Manage. 95: 209– 228. doi:10.1016/S03781127(97) 00026-1.

Loomis, R. M., Phares, R. E. & Crosby, J. S. (1966). Estimating foliage and branchwood quantities in shortleaf pine. Forest Science. 12: 30-39.

Madgwick, H. A. I. (1983). Estimation of the oven-dry weight of ítems, leedles, and branches of individual Pinus radiata trees. New Zealand Journal of Forestry Science. 13: 108109.

Martínez Cortizas, A., Pérez Alberti, A., (1999). Atlas Climático De Galicia. Xunta de Galicia, Santiago de Compostela.

MMAMRM. (2011). Cuarto Inventario Forestal Nacional. Galicia. Ministerio de Medio Ambiente y Medio Rural y Marino, Dirección General de Medio Natural y Política Forestal. 52 pp. Madrid.

Montero, G., Ruiz-Peinado, R. & Muñoz, M. (2005). Producción de biomasa y fijación de CO2 por los bosques españoles. Monografias INIA, Serie Forestal, nº 13.

Moore, J. R. (2010). Allometric equations to predict the total above-ground biomass of radiata pine trees. Annals of Forest Science. 67: 806.

PANER. (2010). Ministerio de Industria, Turismo y Comercio (MINETUR). 171 pp. Madrid. http://www.minetur.gob.es/energia/desarrollo/EnergiaRenov able/Documents/20100630_PANER_Espanaversion_final.p df. Accesed 12 March 2013.

Pérez-Cruzado, C., Rodríguez-Soalleiro, R. (2011). Improvement in accuracy of aboveground biomass estimation in Eucalyptus nitens plantations: Effect of bole sampling intensity and explanatory variables. Forest Ecology and Management. 261 (11): 2016-2028.

Pérez-Cruzado, C., Merino, A. & Rodríguez-Soalleiro, R. (2011). A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass and Bioenergy. 35: 28392851.

R Core Team. (2012). R, A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http,//www.R-project.org/

Reed, D., Tomé, D. & Tomé, M. (1998). Total aboveground biomass and net dry matter accumulation by plant component in young Eucalyptus globulus in response to irrigation. Forest Ecology and Management. 103: 21-32.

Rodríguez-Suárez, J. A., Soto, B., Iglesias, M. L. & DiazFierros, F. (2010). Application of the 3PG forest growth model to a Eucalyptus globulus plantation in Northwest Spain. European Journal of Forest Research. 129 (4): 573583.

Ruiz-Peinado, R., Del Rio, M. & Montero, G. (2011). New models for estimating the carbon sink capacity of Spanish Softwood species. Forest Systems, 20, 1: 176-188.

Snowdon, P., Eamus, D., Gibbons, P., Khanna, P. K., Keith, H., Raison, R. J. & Kirschbaum, M. U. F. (2001). Synthesis of allometrics, review of root biomass, and design of future woody biomass sampling strategies. National Carbon Accounting System, Technical Report Nº. 31, Australian Greenhouse Office. 114 pp. Canberra.

Sprugel, D. G. (1983). Correcting for bias in log-transformed allometric equations. Ecology. 64, 1: 209-210.

Ter-Mikaelan, M. T. & Korzukhin, M. (1997). Biomass equations for sixty-five North American tree species. Forest Ecology and Management. 97: 1-24.

Tomé, M., Oliveira, T., Soares, P. (2006). O modelo Globulus 3.0. Publicações GIMREF - RC2/2006. Universidade Técnica de Lisboa. Instituto Superior de Agronomia. Centro de Estudos Florestais. Lisboa. 23 pp.

Trenberth, K. E. & Josey, S. A. (2007). Observations: surface and atmospheric climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. S. 28 General introduction and objectives. Solomon, D. Qin, M. Manning, et al, Cambridge University Press, Cambridge, U.K. 235-336.

Vega-Nieva, D. J., Tomé, M., Tomé, J., Fontes, L., Soares, P., Ortiz, L., Rodrígez-Soalleiro, R. (2013). Developing a general method for the estimation of the fertility rating parameter of the 3-PG model: application in Eucalyptus globulus plantations in northwestern Spain. Canadian Journal of Forest Research. 43 (7): 627-636.

Verwijst, T. & Telenius, B. (1999). Biomass estimation procedures in short rotation forestry. Forest Ecology and Management. 121: 137-146.

Zianis, D. & Mencuccini, M. (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management. 187: 311-332

Artículos más leídos del mismo autor/a(s)