Main Article Content

Hugo Martínez-Cordeiro
Universidade de Vigo
Spain
Marta Álvarez-Casas
Universidade de Santiago de Compostela
Spain
Marta Lores
Universidade de Santiago de Compostela
Spain
Jorge Domínguez
Universidade de Vigo
Spain
No 9 (2013), Original articles
DOI: https://doi.org/10.15304/rr.id1696
Submitted: 06-02-2014 Accepted: 06-02-2014
Copyright How to Cite

Abstract

Grape marc is a winery waste generated in large quantities in regions such as Galicia (Spain). It has high polyphenol concentrations that inhibit the growth of roots and plants and that could become a risk in using it as organic amendment in agriculture without pretreatment process. Polyphenols are natural bioactive compounds that for their antioxidant properties and other associated properties are important substances considered in obtaining ingredients for cosmetic, pharmaceutical or food industry. In
this experiment we performed a vermicomposting process with grape marc from the Albariño variety. The main physical, biological and chemical changes (particularly, polyphenolics) during the degradation process have been studied. After 42 days of vermicomposting, the isolated seeds still have high concentrations of polyphenols with important industrial interest. The polyphenolic content of the vermicomposted grape marc was decreasing rapidly until the end of the process (day 112); and a mature, stable and high quality vermicompost was obtained for use as organic fertilizer on crops.
Cited by

Article Details

References

Atlas, R.M & Bartha, R. (2002). Ecología microbiana y Microbiología ambiental. Addison Wesley, Madrid.

Berg, B. & McClaugherty, C. (2003). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag Berlin Heidelberg, New York.

Bertran, E., Sort, X., Soliva, M. & Trillas, I. (2004). Composting winery waste: sludges and grape stalks. Bioresource Technology. 95; 203-208.

Brownell, K.H. & Schneider, R.W. (1985). Roles of matric and osmoticcomponents of water potential and their interaction with temperature in the growth of Fusarium oxysporum in synthetic media and soil. Phytopathology.75: 53–57.

Bouché, M. (1972). Lombriciens de France. Ecologie et systématique. Annales de Zoologie et Ecologie Animale, Numéro hors-série. Institut National de la Recherche Agronomique, Paris.

Bustamante, M.A. (2007). Compostaje de los residuos generados en la inductria vinícola y alcoholes. Valorización agronómica de los materiales obtenidos. Tesis doctoral, Universidad Miguel Hernández de Elche.

Cegarra, J. & Paredes C. (2007). Residuos agroindustriales. En: J. Moreno & R. Moral (Eds.). Compostaje. Ediciones Mundi-Prensa, Madrid. 519-553

Cruz, J.M., Domínguez, H. & Parajo, J.C. (2004). Assessment of the production of antioxidants from winemaking waste solids. Journal of Agricultural and Food Chemistry. 56: 5612-5620.

Dell’Agli, M., Buscialà, A., & Bosisio, E. (2004). Vascular effects of wine polyphenols. Cardiovascular Research. 63, 4: 593–602.

Dommergues, Y. & Mangenot, F. (1970). Écologie microbienne du sol. Masson et Cie. París.

Domínguez, J. (2004). State of the art and new perspectives on vermicomposting research. En: C.A. Edwars (Ed.). Earthworm ecology. 2 nd d. CRC Press, Boca Raton. 401424.

Domínguez, J., Aira, M., Gómez-Brandón, M. (2010). Vermicomposting: earthworms enhance the work of microbes. En: H. Insam et al. (Eds), Microbes at work: from wastes to resources. Springer-Verlag, Berlin Heildelberg. 93-114.

Domínguez, J. & Edwars C.A. (2010). Biology and ecology of earthworm species used for vermicomposting. En: C.A. Edwars et al. (Eds.). Vermiculture technology: Earthworms, organic waste and environmental management. CRC Press. Boca Raton, Florida. 25-37.

Edwards, C.A. & Bohlen, P.J. (1996). Biology and ecology of earthworms. Chapman and Hall, London.

Edwards, C.A. (1988). Breakdown of animal, vegetable and industrial organic wastes by earthworms. En: C.A. Edwards & E.F. Neuhauser (Eds.). Earthworms in waste and enviromental management. SPB Academic Publishing, The Hague. 21-31

Evans, A.C. & Guild, W.J.Mc.L. (1948). Studies on the relationships between earthworms and soil fertility. IV. On the life cycles of some British Lumbricidae. Annals of Applied Biology. 35: 471-484.

García-Alonso, J., Periago, M.J, Vidal Guevara, M.L., Cantos, E. (2002). Evaluación de las propiedades antioxidantes en concentrados de uva frutas rojas. Anales de Veterinaria (Murcia). 18: 103-114.

García-Salas, P., Morales-Soto, A., Segura-Carretero, A. & Fernandez-Gutiérrez, A. (2010).

Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules. 15: 8813-8826.

Gharras, H. (2009). Polyphenols: Food sources, properties and applications – A review. International Journal of Food Science and Technology. 44, 12: 2512–2518.

Goering, H. K & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agriculture Handbook. 379.

Gómez-Brandón, M., Lazcano, C., Lores, M. & Domínguez, J. (2010). Papel de las lombrices de tierra en la degradación del bagazo de uva: efectos sobre las características químicas y la microflora en las primeras etapas del proceso. Acta Zoológica Mexicana (n.s.), Número Especial 2: 397408.

Hartenstein, F., Hartenstein, E. & Hartenstein, R. (1981). Gut load and transit time in the earthworm Eisenia foetida. Pedobiologia. 22: 5–20.

He, X.T., Logan, T.J. & Traine, S.J. (1995). Physical and chemical characteristics of selected U.S. municipal solid waste compost. Journal of Environmental Quality. 24: 543552.

Hirai, M.F., Chanyasak, V., Kubota, M. (1983). A standard measurement for compost maturity. Biocycle. 24: 54-56.

Inbar, J. & Chet, Y. (1991). Detection of chitinolytic activity in the rhizosphere using image analysis. Soil Biology & Biochemistry. 23: 239–242.

Jiménez, E. & García, V. (1989). Evaluation of city refuse compost maturity: a review. Biological wastes. 27: 115-142.

Maier, T., Schieber, A., Kammerer, D.R., Carle, R. (2009). Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry. 112, 3: 551–559.

Mitchell, M.J., Parkinson, C.M., Hamilton, W.E. & Dindal, D.L. (1982). Role of the earthworm Eisenia foetida, in affecting organic matter decomposition in microcosms of sludge-amended soil. Journal of Applied Ecology. 19: 805812.

Quideau, S., Deffieux, D., Douat-Casassus, C. & Pouységu, L. (2011). Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition. 50, 3: 586- 621.

Rice-Evans, C. (2001). Flavonoid antioxidants. Current Medicinal Chemistry. 8: 797−807.

Singleton, V.L., Rossi, J.A. Jr. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16; 144-158.

Usaquén-Castro, X., Martínez-Rubio, M., Aya-Baquero, H. & González–Martínez, G. (2006). Ultrasound-assisted extraction of polyphenols from red-grape (Vitis vinifera) residues. IUFOST.

Wu, L., Ma, L.Q., Martinez, G.A. (2000). Comparison of methods for evaluating stability and maturity of biosolids compost. Journal of Environmental Quality. 29: 424-429.

Yilmaz, M. (2005). The effects of rosiglitazone and metformin on oxidative stress and homocysteine levels in lean patients with polycystic ovary sundrome. Human Reproduction. 20: 333-340

Most read articles by the same author(s)