Main Article Content

Paulo Mourao
Universidade do Minho-Escola de Economia e Gestão, Departamento de Economía, Campus de Gualtar, 4710-057 Braga, Portugal
Ricardo Bento
Universidade de Trás-os-Montes e Alto Douro (UTAD), Centro de Estudos Transdisciplinares para o Desenvolvimento (CETRAD), Departamento de Engenharias, Quinta de Prados, 5000-801 Vila Real, Portugal
Vol 30 No 1 (2021): Special Issue. COVID-19 and its economic effects: Supply chain disruptions and behavioural changes, Articles, pages 1-12
Submitted: 30-06-2020 Accepted: 10-04-2021 Published: 22-05-2021
Copyright How to Cite


This paper investigates the pattern of COVID-19 contagion in Portuguese municipalities from March 23rd to April 5th (the exponential phase). We have recurred to spatial autocorrelation models to discuss how the conglomeration of highly infectious spaces has also contributed to infecting neighbouring municipalities. We have used several indicators for the contagion of COVID-19 from the number of infectious individuals to rates of infectious. As explicative variables, additionally to spatial proximity, we also considered population density, the share of the elderly population as well as the length of municipal perimeter/border. Our results show that highly dense municipalities tended to contaminate close areas. Lengthier perimeters also showed a positive effect on the contagious indicators for a given municipality.

Cited by

Article Details

Funding data


Anselin, L. (1992). Spatial data analysis with GIS: An introduction to application in the social sciences. Technical Report 92-10. Santa Barbara, CA: National Center for Geographic Information and Analysis. Retrieved from:

Anselin, L. (1995). Local Indicators of Spatial Association-LISA. Geographical Analysis, 27(2), 93-115. DOI:

Anselin, L., & Hudak, S. (1992). Spatial econometrics in practice. A review of software options. Regional Science and Urban Economics, 22(3), 509-536. DOI:

Anselin, L., & Rey, S. J. (2014). Modern spatial econometrics in practice: A guide to GeoDa, GeoDaSpace and PySAL. Chicago, IL: GeoDa Press.

Cavaco, C. (Coord.). (2016). Habitat III – National Report Portugal. Lisboa, Portugal: Direção Geral do Território. Retrieved from:

Chandra, S., Kassens-Noor, E., Kuljanin, G., & Vertalka, J. (2013). A geographic analysis of population density thresholds in the influenza pandemic of 1918-19. International Journal of Health Geographics, 12(1), 9. DOI:

Cont, R., Kotlicki, A., & Xu, R. (2020). Modelling COVID-19 contagion: Risk assessment and targeted mitigation policies. MedRxiv. DOI:

Davies, N. G., Klepac, P., Liu, Y., Prem, K., Jit, M., & CMMID COVID-19 working group, Eggo, R. M. (2020). Age-dependent effects in the transmission and control of COVID-19 epidemics. MedRxiv. DOI:

Elhorst, J. P. (2014). Spatial econometrics. From cross-sectional data to spatial panels. Springer Briefs in Regional Science. Berlin, Germany: Springer.

Gao, Q., Hu, Y., Dai, Z., Xiao, F., Wang, J., & Wu, J. (2020). The epidemiological characteristics of 2019 novel coronavirus diseases (COVID-19) in Jingmen, China. SSRN Electronic Journal, 2(8), 113-122. DOI:

Guliyev, H. (2020). Determining the spatial effects of COVID-19 using the spatial panel data model. Spatial Statistics, 38, 100443. DOI:

Holko, A., Mędrek, M., Pastuszak, Z., & Phusavat, K. (2016). Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Systems with Applications, 48, 1-8. DOI:

Hu, H., Nigmatulina, K., & Eckhoff, P. (2013). The scaling of contact rates with population density for the infectious disease models. Mathematical Biosciences, 244(2), 125-134. DOI:

INE. (2020). COVID-19: uma leitura do contexto demográfico e da expressão territorial da pandemia - Dados até 16 de dezembro. Lisboa, Portugal: Instituto Nacional de Estatística. Retrieved from:

Kang, D., Choi, H., Kim, J.-H., & Choi, J. (2020). Spatial epidemic dynamics of the COVID-19 outbreak in China. International Journal of Infectious Diseases. DOI:

Krisztin, T., Piribauer, P., & Wögerer, M. (2020). The spatial econometrics of the coronavirus pandemic. Letters in Spatial and Resource Sciences, 13, 209-218. DOI:

Le Gallo, J., & Ertur, C. (2003). Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980-1995. Papers in Regional Science, 82, 175-201. Retrieved from:

Li, R., Richmond, P., & Roehner, B. M. (2018). Effect of population density on epidemics. Physica A: Statistical Mechanics and Its Applications, 510, 713-724. DOI:

Lima, I. D., Queiroz, J. W., Lacerda, H. G., Queiroz, P. V. S., Pontes, N. N., Barbosa, J. D. A., Martins, D. R., Weirahter, J. L., Pearson, R. C., Wilson, M. E., & Jeronimo, S. M. B. (2012). Leishmania infantum chagasi in Northeastern Brazil: Asymptomatic infection at the urban perimeter. American Journal of Tropical Medicine and Hygiene, 86(1), 99-107. DOI:

Mansour, S., Al Kindi, A., Al-Said, A., Al-Said, A., & Atkinson, P. (2021). Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustainable Cities and Society, 65, 102627. DOI:

Mollalo, A., Vahedi, B., & Rivera, K. M. (2020). GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Science of the Total Environment, 728, 138884. DOI:

Neves, S. (14 Abril 2020). Covid-19: TVI retira reportagem em que dizia que Norte é mais afectado por ter população “menos educada”. Público. Retrieved from:

Oliva Denis, R. D., & Aldrey Vazquez, J. A. (2018). Patróns de distribución territorial da poboación estranxeira en Galicia, 1997-2017. Revista Galega de Economía, 27(2), 49-60. DOI:

Páez, A., Lóez, F. A., Menezes, T., Cavalcanti, R., & Pitta, M. G. R. (2020). A spatio-temporal analysis of the environmental correlates of COVID-19 incidence in Spain. Geographical Analysis, 1-25. DOI:

Ramírez-Aldana, R., Gómez-Verjan, J. C., & Bello-Chavolla, O. Y. (2020). Spatial analysis of COVID-19 spread in Iran: Insights into geographical and structural transmission determinants at a province level. PloS Neglected Tropical Diseases, 14(11). DOI:

Sannigrahi, S., Pilla, F., Basu, B., Sarkar Basu, A., & Molter, A. (2020). Examining the association between socio-demographic composition and COVID-19 fatalities in the European region using spatial regression approach. Sustainable Cities and Society, 62, 102418. DOI:

Sayampanathan, A. A., Heng, C. S., Pin, P. H., Pang, J., Leong, T. Y., & Lee, V. J. (2021). Infectivity of asymptomatic versus symptomatic COVID-19. The Lancet, 397(10269), 93-94. DOI:

Sarrias, M. (2020). Spatial models. Talca, Chile: Universidad de Talca.

Singh, R., & Adhikari, R. (2020). Age‐structured impact of social distancing on the COVID‐19 epidemic in India. arXiv:2003.12055 [q-bio.PE]. Retrieved from:

Sun, F., Matthews, S. A., Yang, T. C., & Hu, M. H. (2020). A spatial analysis of the COVID-19 period prevalence in US counties through June 28, 2020: Where geography matters? Annals of Epidemiology. 52, 54-59.e1. DOI:

You, H., Wu, X., & Guo, X. (2020). Distribution of COVID-19 morbidity rate in association with social and economic factors in Wuhan, China: Implications for urban development. International Journal of Environmental Research and Public Health, 17(10), 3417. DOI:

Zhang, C. H., & Schwartz, G. G. (2020). Spatial disparities in coronavirus incidence and mortality in the United States: An ecological analysis as of may 2020. The Journal of Rural Health, 36(3), 433-445. DOI: