Bird communities after 37 years in a rural area of NW Spain
Main Article Content
Abstract
In a globalized world, changes in human activities are negatively affecting biodiversity at different scales. Long-term monitoring of bird communities can inform about changes in biodiversity over time. We explored how bird species richness, and abundance changed after a 37-year period at 5 sites in O Courel Mountains, a well conserved region of NW Spain. We also analyzed the abundance changes over time in the 15 most abundant species and whether these changes relate to the phenotypes of these species. Repeated bird surveys were performed in the same locations of five different sites in 1977 and 2014. Our results showed species richness and overall bird abundance did not change after 37 years within the five studied sites. Although, within species analyses showed 8 species changed their abundances. Overall, Cyanistes caeruleus, Garrulus glandarius, Parus major, Prunella modularis and Sylvia atricapilla increased their abundances and Erithacus rubecula, Phylloscopus ibericus, and Troglodytes troglodytes decreased over time. We did not find any relationship between the change in species abundances and bird phenotypes. This study shows that, despite the specific changes in the abundance of eight species over nearly four decades, overall bird species richness and abundance may be maintained in well preserved natural areas.
Keywords:
Article Details
References
Allen, D. C., Bateman, H. L., Warren, P. S., Albuquerque, F. S., Arnett‐Romero, S., & Harding, B. (2019). Long‐term effects of land‐use change on bird communities depend on spatial scale and land‐use type. Ecosphere, 10(11). https://doi.org/10.1002/ecs2.2952
Bas, S., Guitián, J. M., Sánchez, J. L., & De Castro, A. (1978). Contribución al estudio de las comunidades de vertebrados terrestres de la sierra de Caurel (Lugo).
Bas, S., Guitián, J. M., & Sobral, M. (2018). Biodiversity in Eucalyptus plantations versus native oak forests in Galicia: plants and birds. Nova Acta Científica Compostelana, 25, 71–81. https://revistas.usc.gal/index.php/nacc/article/view/5192
Batáry, P., Kurucz, K., Suarez‐Rubio, M., & Chamberlain, D. E. (2018). Non‐linearities in bird responses across urbanization gradients: A meta‐analysis. Global Change Biology, 24(3), 1046–1054. https://doi.org/10.1111/gcb.13964
Beilin, R., Lindborg, R., Stenseke, M., Pereira, H. M., Llausàs, A., Slätmo, E., Cerqueira, Y., Navarro, L., Rodrigues, P., Reichelt, N., Munro, N., & Queiroz, C. (2014). Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy, 36, 60–72. https://doi.org/10.1016/j.landusepol.2013.07.003
Blair, R. B. (1999). Birds and butterflies along an urban gradient: Surrogate taxa for assessing biodiversity? Ecological Applications, 9(1), 164–170. https://doi.org/10.2307/2641176
Bowler, D. E., Bjorkman, A. D., Dornelas, M., Myers‐Smith, I. H., Navarro, L. M., Niamir, A., Supp, S. R., Waldock, C., Winter, M., Vellend, M., Blowes, S. A., Böhning‐Gaese, K., Bruelheide, H., Elahi, R., Antão, L. H., Hines, J., Isbell, F., Jones, H. P., Magurran, A. E., … Bates, A. E. (2020). Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature, 2(2), 380–394. https://doi.org/10.1002/pan3.10071
Brandt, J. S., Wood, E. M., Pidgeon, A. M., Han, L.-X., Fang, Z., & Radeloff, V. C. (2013). Sacred forests are keystone structures for forest bird conservation in southwest China’s Himalayan Mountains. Biological Conservation, 166, 34–42. https://doi.org/10.1016/j.biocon.2013.06.014
Buhk, C., Alt, M., Steinbauer, M. J., Beierkuhnlein, C., Warren, S. D., & Jentsch, A. (2017). Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe — A call to adapt our conservation measures. Science of The Total Environment, 576, 225–233. https://doi.org/10.1016/j.scitotenv.2016.10.106
Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644
Calviño-Cancela, M. (2013). Effectiveness of eucalypt plantations as a surrogate habitat for birds. Forest Ecology and Management, 310, 692–699. https://doi.org/10.1016/j.foreco.2013.09.014
Coetzee, B. W. T., & Chown, S. L. (2016). Land-use change promotes avian diversity at the expense of species with unique traits. Ecology and Evolution, 6(21), 7610–7622. https://doi.org/10.1002/ece3.2389
Corbelle-Rico, E., Crecente-Maseda, R., & Santé-Riveira, I. (2012). Multi-scale assessment and spatial modelling of agricultural land abandonment in a European peripheral region: Galicia (Spain), 1956–2004. Land Use Policy, 29(3), 493–501. https://doi.org/10.1016/j.landusepol.2011.08.008
Da Silveira, N. S., Niebuhr, B. B. S., Muylaert, R. de L., Ribeiro, M. C., & Pizo, M. A. (2016). Effects of land cover on the movement of frugivorous birds in a heterogeneous landscape. PLOS ONE, 11(6), e0156688. https://doi.org/10.1371/journal.pone.0156688
Díaz, L. (2006). Influences of forest type and forest structure on bird communities in oak and pine woodlands in Spain. Forest Ecology and Management, 223(1–3), 54–65. https://doi.org/10.1016/j.foreco.2005.10.061
Donald, P. F., Green, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1462), 25–29. https://doi.org/10.1098/rspb.2000.1325
Escandell, V. (2013). Las aves agrarias sufren su propia crisis. Aves y Naturaleza, 13, 26–27. https://dialnet.unirioja.es/servlet/articulo?codigo=4876710
Flohre, A., Fischer, C., Aavik, T., Bengtsson, J., Berendse, F., Bommarco, R., Ceryngier, P., Clement, L. W., Dennis, C., Eggers, S., Emmerson, M., Geiger, F., Guerrero, I., Hawro, V., Inchausti, P., Liira, J., Morales, M. B., Oñate, J. J., Pärt, T., … Tscharntke, T. (2011). Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecological Applications, 21(5), 1772–1781. https://doi.org/10.1890/10-0645.1
Fonderflick, J., Besnard, A., & Martin, J.-L. (2013). Species traits and the response of open-habitat species to forest edge in landscape mosaics. Oikos, 122(1), 42–51. https://doi.org/10.1111/j.1600-0706.2012.20308.x
Fuller, R. J., Gregory, R. D., Gibbons, D. W., Marchant, J. H., Wilson, J. D., Baillie, S. R., & Carter, N. (1995). Population declines and range contractions among lowland farmland birds in Britain. Conservation Biology, 9(6), 1425–1441. https://doi.org/10.1046/j.1523-1739.1995.09061425.x
Fuller, R. J., Smith, K. W., Grice, P. V., Currie, F. A., & Quine, C. P. (2007). Habitat change and woodland birds in Britain: implications for management and future research. Ibis, 149(SUPPL. 2), 261–268. https://doi.org/10.1111/j.1474-919X.2007.00775.x
Gao, X., Liang, S., & He, B. (2019). Detected global agricultural greening from satellite data. Agricultural and Forest Meteorology, 276.277, 107652. https://doi.org/10.1016/j.agrformet.2019.107652
García, E., García-Rovés, P., Vigil Morán, A., Alonso, L. M., Fernández Pajuelo, M. A., Silva, G., Pascual, D., & Álvarez, D. (2014). Atlas de las aves nidificantes de Asturies (1990-2010) (First ed.). Coordinadora Ornitolóxica d’Asturies. https://doi.org/10.13140/2.1.4361.6962
Goded, S., Ekroos, J., Domínguez, J., Azcárate, J. G., Guitián, J. A., & Smith, H. G. (2019). Effects of eucalyptus plantations on avian and herb species richness and composition in North-West Spain. Global Ecology and Conservation, 19, e00690. https://doi.org/10.1016/j.gecco.2019.e00690
Guerrero, I., Morales, M. B., Oñate, J. J., Geiger, F., Berendse, F., Snoo, G. de, Eggers, S., Pärt, T., Bengtsson, J., Clement, L. W., Weisser, W. W., Olszewski, A., Ceryngier, P., Hawro, V., Liira, J., Aavik, T., Fischer, C., Flohre, A., Thies, C., & Tscharntke, T. (2012). Response of ground-nesting farmland birds to agricultural intensification across Europe: Landscape and field level management factors. Biological Conservation, 152, 74–80. https://doi.org/10.1016/j.biocon.2012.04.001
Guitián, J. A. (2006). La biodiversidad vegetal de O Caurel: unas 800 especies componen la flora de este macizo montañoso. Quercus, 1, 17–19. https://dialnet.unirioja.es/servlet/articulo?codigo=1986083
Guitián, J., Guitián, P., Magrach, A., Docampo, C., Domínguez, P., & Guitián, L. (2012). Effect of management and spatial characteristics on plant species richness of Castanea sativa Mill. woodlots in the NW Iberian Peninsula. Journal of Forest Research, 17(1), 98–104. https://doi.org/10.1007/s10310-011-0261-x
Guitián, J. M., Munilla, I., González, M., & Arias, M. (2004). Guía de las Aves de O Caurel. Lynx Edicions.
Herzon, I., Marja, R., Menshikova, S., & Kondratyev, A. (2014). Farmland bird communities in an agricultural landscape in Northwest Russia: Seasonal and spatial patterns. Agriculture, Ecosystems & Environment, 183, 78–85. https://doi.org/10.1016/j.agee.2013.10.015
Järvinen, O., & Väisänen, R. A. (1976). Finnish line transect censuses. Ornis Fennica, 53, 115–118.
Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157
Jiguet, F., Devictor, V., Ottvall, R., Van Turnhout, C., Van der Jeugd, H., & Lindström, Å. (2010). Bird population trends are linearly affected by climate change along species thermal ranges. Proceedings of the Royal Society B: Biological Sciences, 277(1700), 3601–3608. https://doi.org/10.1098/rspb.2010.0796
Kerr, J. T., & Currie, D. J. (1995). Effects of human activity on global extinction risk. Conservation Biology, 9(6), 1528–1538. https://doi.org/10.1046/j.1523-1739.1995.09061528.x
Lehikoinen, A., Brotons, L., Calladine, J., Campedelli, T., Escandell, V., Flousek, J., Grueneberg, C., Haas, F., Harris, S., Herrando, S., Husby, M., Jiguet, F., Kålås, J. A., Lindström, Å., Lorrillière, R., Molina, B., Pladevall, C., Calvi, G., Sattler, T., … Trautmann, S. (2019). Declining population trends of European mountain birds. Global Change Biology, 25(2), 577–588. https://doi.org/10.1111/gcb.14522
López-Bao, J. V., González-Varo, J. P., & Guitián, J. M. (2015). Mutualistic relationships under landscape change: Carnivorous mammals and plants after 30 years of land abandonment. Basic and Applied Ecology, 16(2), 152–161. https://doi.org/10.1016/j.baae.2014.12.001
MacDonald, D., Crabtree, J. ., Wiesinger, G., Dax, T., Stamou, N., Fleury, P., Gutierrez Lazpita, J., & Gibon, A. (2000). Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. Journal of Environmental Management, 59(1), 47–69. https://doi.org/10.1006/jema.1999.0335
McGill, B. J., Dornelas, M., Gotelli, N. J., & Magurran, A. E. (2015). Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution, 30(2), 104–113. https://doi.org/10.1016/j.tree.2014.11.006
Morelli, F., Benedetti, Y., & Callaghan, C. T. (2020). Ecological specialization and population trends in European breeding birds. Global Ecology and Conservation, 22, e00996. https://doi.org/10.1016/j.gecco.2020.e00996
Munilla, I., López-Bao, J. V., González-Varo, J. P., & Guitián, J. M. (2008). Long-term changes in the breeding bird assemblages of two woodland patches in Northwest Spain. Ardeola, 55(2), 221–227. https://www.ardeola.org/es/volumenes/552/articulos/221-227/
Parody, J. M., Cuthbert, F. J., & Decker, E. H. (2001). The effect of 50 years of landscape change on species richness and community composition. Global Ecology and Biogeography, 10(3), 305–313. https://doi.org/10.1046/j.1466-822X.2001.00233.x
Payevsky, V. A. (2006). Mechanisms of population dynamics in trans-Saharan migrant birds: A review. Entomological Review, 86(S1), S82–S94. https://doi.org/10.1134/S001387380610006X
Redlich, S., Martin, E. A., Wende, B., & Steffan-Dewenter, I. (2018). Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes. PLOS ONE, 13(8), e0200438. https://doi.org/10.1371/journal.pone.0200438
Regos, A., Domínguez, J., Gil-Tena, A., Brotons, L., Ninyerola, M., & Pons, X. (2016). Rural abandoned landscapes and bird assemblages: winners and losers in the rewilding of a marginal mountain area (NW Spain). Regional Environmental Change, 16(1), 199–211. https://doi.org/10.1007/s10113-014-0740-7
Rosenvald, R., Lõhmus, A., Kraut, A., & Remm, L. (2011). Bird communities in hemiboreal old-growth forests: The roles of food supply, stand structure, and site type. Forest Ecology and Management, 262(8), 1541–1550. https://doi.org/10.1016/j.foreco.2011.07.002
Russo, D. (2006). Effects of land abandonment on animal species in Europe: Conservation and management implications. https://www.researchgate.net/publication/252335130
Salaverri, L., Guitián, J. M., Munilla, I., & Sobral, M. (2019). Bird richness decreases with the abandonment of agriculture in a rural region of SW Europe. Regional Environmental Change, 19(1), 245–250. https://doi.org/10.1007/s10113-018-1375-x
Şekercioğlu, Ç. H., Mendenhall, C. D., Oviedo-Brenes, F., Horns, J. J., Ehrlich, P. R., & Daily, G. C. (2019). Long-term declines in bird populations in tropical agricultural countryside. Proceedings of the National Academy of Sciences, 116(20), 9903–9912. https://doi.org/10.1073/pnas.1802732116
Seoane, J., Laiolo, P., & Obeso, J. R. (2017). Abundance leads to more species, particularly in complex habitats: a test of the increased population size hypotheses in bird communities. Journal of Biogeography, 44(3), 556–566. https://doi.org/10.1111/jbi.12877
Shivanna, K. R. (2020). The sixth mass extinction crisis and its impact on biodiversity and human welfare. Resonance, 25(1), 93–109. https://doi.org/10.1007/s12045-019-0924-z
Sirami, C., Brotons, L., Burfield, I., Fonderflick, J., & Martin, J.-L. (2008). Is land abandonment having an impact on biodiversity? A meta-analytical approach to bird distribution changes in the north-western Mediterranean. Biological Conservation, 141(2), 450–459. https://doi.org/10.1016/j.biocon.2007.10.015
Sirami, C., Brotons, L., & Martin, J.-L. (2007). Vegetation and songbird response to land abandonment: from landscape to census plot. Diversity and Distributions, 13(1), 42–52. https://doi.org/10.1111/j.1472-4642.2006.00297.x
Storchová, L., & Hořák, D. (2018). Life-history characteristics of European birds. Global Ecology and Biogeography, 27(4), 400–406. https://doi.org/10.1111/geb.12709
Suárez-Seoane, S., Osborne, P. E., & Baudry, J. (2002). Responses of birds of different biogeographic origins and habitat requirements to agricultural land abandonment in northern Spain. Biological Conservation, 105(3), 333–344. https://doi.org/10.1016/S0006-3207(01)00213-0
Tellería, J. L. (2019). Altitudinal shifts in forest birds in a Mediterranean mountain range: causes and conservation prospects. Bird Conservation International, 30(4), 1–11. https://doi.org/10.1017/S0959270919000455
Traba, J., & Morales, M. B. (2019). The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Scientific Reports, 9(1), 9473. https://doi.org/10.1038/s41598-019-45854-0
Valero, E., Álvarez, X., & Picos, J. (2019). Connectivity study in Northwest Spain: barriers, impedances, and corridors. Sustainability, 11(18), 5124. https://doi.org/10.3390/su11185124
Verhulst, J., Báldi, A., & Kleijn, D. (2004). Relationship between land-use intensity and species richness and abundance of birds in Hungary. Agriculture, Ecosystems & Environment, 104(3), 465–473. https://doi.org/10.1016/j.agee.2004.01.043