Contenido principal del artículo

David López Córdoba
Universidad de Granada
España
Ángel Cazorla Martín
Universidad de Granada
España
https://orcid.org/0009-0003-2106-7773
Ángel Martín-Lagos
Universidad de Granada
España
Vol. 23 Núm. 1 (2024): Revista RIPS, Artículos
DOI: https://doi.org/10.15304/rips.23.1.9796
Recibido: 18-03-2024 Publicado: 27-06-2024
Derechos de autoría Cómo citar

Resumen

El presente trabajo examina la pertinencia y las limitaciones de los modelos tradicionales de predicción electoral en el campo de la Ciencia Política. Se señala cómo los métodos clásicos basados en variables sociodemográficas y actitudinales están perdiendo precisión debido a la información incorrecta proporcionada por los encuestados y al giro emocional derivado de la espectacularización de la política. Se destaca la necesidad de buscar nuevos enfoques que incorporen la medición de las emociones, principalmente basados en la teoría de la inteligencia afectiva de George Marcus, con el apoyo de técnicas de medición psicofisiológica. Se observan estudios que han utilizado la electroencefalografía (EEG) y la variabilidad de la frecuencia cardiaca (VFC) para predecir el comportamiento electoral con mayor precisión que los métodos tradicionales, así como modelos de determinación de la emoción de manera automática. A fin de resolver los problemas de los modelos actuales, se propone la creación de un nuevo modelo que combine el autoinforme y la respuesta fisiológica para mejorar la predicción del comportamiento político.

Citado por

Detalles del artículo

Referencias

ANSOLABEHERE, Stephen y HERSH, Eitan (2012). “Validation: What Big Data Reveal About Survey Misreporting and the Real Electorate”. Poitical Analysis, 20(4), 437-459. https://doi.org/10.1093/pan/mps023

BRADLEY, Margaret M. y LANG, Peter J. (1994). “Measuring emotion: The self-assessment manikin and the semantic differential”. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59. https://doi.org/10.1016/0005-7916(94)90063-9

CAMPBELL, Angus; CONVERSE, Philip E.; MILLER, Warren E.; y STOKES, Donald E. (1960). The American voter, New York: John Wiley and sons.

DIMBERG, Ulf (1990). “Facial electromyography and emotional reactions”. Psychophysiology, 27(5), 481–494. https://doi.org/10.1111/J.1469-8986.1990.TB01962.X

DODD, Michael D.; BALZER, Amanda; JACOBS, Carly M.; GRUSZCZYNSKI, Michael W.; SMITH, Kevin B. y HIBBING, John R. (2012). “The political left rolls with the good and the political right confronts the bad: connecting physiology and cognition to preferences” Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1589), 640-649. https://doi.org/10.1098/RSTB.2011.0268

DOMÍNGUEZ-JIMÉNEZ, Juan Antonio; CAMPO-LANDINES, Kiara; MARTÍNEZ-SANTOS, Juan Carlos; DELAHOZ, Enrique José y CONTRERAS-ORTIZ, Sonia Helena (2020). “A machine learning model for emotion recognition from physiological signals”. Biomedical Signal Processing and Control, 55, 101646. https://doi.org/10.1016/J.BSPC.2019.101646

DOWNS, Anthony (1957). An economic theory of democracy, Inglaterra: Harper & Row.

EKMAN, Paul (1992). “An Argument for Basic Emotions”. Cognition and Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068

EKMAN, Paul y FRIESEN, Wallace V. (1978). “Facial action coding system”. Environmental Psychology & Nonverbal Behavior. https://doi.org/10.1037/t27734-000

EKMAN, Paul y ROSENBERG, Erika L. (2005). What the face reveals: basic and applied studies of spontaneous expression using the facial action coding system (FACS), Oxford: Oxford University Press.

GALLI, Giulia; ANGELUCCI, Davide; BODE, Stefan; DE GIORGI, Chiara; DE SIO, Lorenzo; PAPARO, Aldo; Di LORENZO, Giorgio y BETTI, Viviana (2021). “Early EEG responses to pre-electoral survey items reflect political attitudes and predict voting behavior”. Scientific Reports 2021, 11(1), 1–13. https://doi.org/10.1038/s41598-021-96193-y

HERMANN, Margaret G. (1986). Political psychology, San Francisco: Jossey-Bass.

HILL, Seth J. y TAUSANOVITCH, Chris (2015). “A Disconnect in Representation? Comparison of Trends in Congressional and Public Polarization”. The Journal of Politis, 77(4), 1058–1075. https://doi.org/10.1086/682398

KLEINGINNA, Paul R. y KLEINGINNA, Anne M. (1981). “A categorized list of emotion definitions, with suggestions for a consensual definition”. Motivation and Emotion, 5(4), 345–379. https://doi.org/10.1007/BF00992553

KOTAK, Aditya y MOORE, Don A. (2020). “Public Election Polls are 95% Confident but only 60% Accurate”. Behavioral Science and Policy https://doi.org/10.31234/osf.io/rj643

LADD, Jonathan McDondald y LENZ, Gabriel S. (2008). Reassessing the Role of Anxiety in Vote Choice. Political Psychology, 29(2), 275–296. https://doi.org/10.1111/j.1467-9221.2008.00626.x

LANDIS, Carney y HUNT, William Alvin (1939). The startle pattern, New York: Farrar & Rinehart.

LANG, Peter J. (1994). The Varieties of Emotional Experience: A Meditation on James-Lange Theory. Psychological Review, 101(2), 211–221. https://doi.org/10.1037/0033-295X.101.2.211

LAZARSFELD, Paul F.; BERELSON, Bernard y Gaudet, Hazel (1944). The people’s choice: how the voters makes up his mind in a presidential campaign, New York: Columbia University Press.

LAZARUS, Richard S. (1991). Emotion and Adaptation. Oxford: Oxford University Press.

LIPSET, Seymour Martin. (1961). Political man: the social bases of politics. Baltimore: Johns Hopkins University Press.

LODGE, Milton y TABER, Charles (2000). “Three Steps toward a Theory of Motivated Political Reasonin”, en A. LUPIA y M. D. MCCUBBINS (eds.) Elements of Reason. Cognition, choice and the bounds of rationality, Cambridge: Cambridge University Press,183–213. https://doi.org/10.1017/CBO9780511805813.009

MACKUEN, Michael; MARCUS, George E. y NEUMAN, W. Russell (2000). Affective Intelligence and Political Judgment, Chicago: University of Chicago Press.

MARCUS, George E.; VALENTINO, Nicholas A.; VASILOPOULOS, Pavlos y FOUCAULT, Martial (2019). “Applying the Theory of Affective Intelligence to Support for Authoritarian Policies and Parties”. Political Psychology, 40(S1), 109–139. https://doi.org/10.1111/POPS.12571

MAUSS, Iris B. y ROBINSON, Michael D. (2009). “Measures of emotion: A review”. Cognition & Emotion, 23(2), 209–237. https://doi.org/10.1080/02699930802204677

MERTON, Robert (1968). Contributions to the Theory of Reference Group Behaviour, Nueva York: The Free Press.

MILLER, Jon, KALMBACH, Jason, WOODS, Logan & CEPURAN, Claire. (2021). “The Accuracy and Value of Voter Validation in National Surveys: Insights from Longitudinal and Cross-Sectional Studies”. Political Research Quarterly, 74(2), 332–347. https://doi.org/10.1177/1065912920903432/

MO GROBA, Diego (2021). Impacto de las emociones en la decisión de voto: hacia una perspectiva emocional del comportamiento electoral. Universidad de Santiago de Compostela: Tesis Doctoral.

MONTERO, Maritza y DORNA, Alejandro (1998). “La psicologia politica contemporánea”. Revista Latinoamericana de Psicología, 25(1), 21–43.

OXLEY, Douglas R.; SMITH, Kevin B.; ALFORD, John R.; HIBBING, Matthew V.; MILLER, Jennifer L.; SCALORA, Mario; HATEMI, Peter K. y HIBBING, John R. (2008). “Political attitudes vary with physiological traits”. Science, 321(5896), 1667–1670. https://doi.org/10.1126/SCIENCE.1157627

PANKSEPP, Jaak (1992). “A critical role for “affective neuroscience” in resolving what is basic about basic emotions”. Psychological Review, 99(3), 554–560. https://doi.org/10.1037//0033-295X.99.3.554

PINTO, Gisela; CARVALHO, João M.; BARROS, Filipa; SOARES, Sandra C.; PINHO, Armando J. y BRÁS, Susana (2020). “Multimodal Emotion Evaluation: A Physiological Model for Cost-Effective Emotion Classification”. Sensors 2020, 20(12), 3510. https://doi.org/10.3390/S20123510

PLUTCHIK, Robert (1958). “Outlines of a new theory of emotion”. Transactions of the New York Academy of Sciences, 20(5), 394–403. https://doi.org/10.1111/J.2164-0947.1958.TB00600.X

PLUTCHIK, Robert (1980). “A general psychoevolutionary theory of emotion”, en R. PLUTCHIK y H. KELLERMAN (eds.), Theories of Emotion, Cambridge: Academic Press, 3–33. https://doi.org/10.1016/B978-0-12-558701-3.50007-7

PLUTCHIK, Robert (1990). “Emotions and psychotherapy: A psychoevolutionary perspective”, en R. PLUTCHIK Y h. KELLERMAN (eds.) Emotion, psychopathology, and psychotherapy, Cambridge: Academic Press, 3–41.

RENSHON, Jonathan; LEE, Jooa Julia y TINGLEY, Dustin (2015). “Physiological Arousal and Political Beliefs”. Political Psychology, 36(5), 569–585. https://doi.org/10.1111/pops.12173

ROBINSON, Michael D. y CLORE, Gerald L (2002). “Episodic and semantic knowledge in emotional self-report: Evidence for two judgment processes”. Journal of Personality and Social Psychology, 83, 198–215. https://doi.org/10.1037/0022-3514.83.1.198

RODRÍGUEZ LIÑARES, Leandro; CUESTA, Pedro; MÉNDEZ, Arturo J.; VILA, Xosé A. y LADO, María J. (2013). “¿Afectan los Spots Electorales al Ritmo Cardíaco?”. Comunicación, Cultura y Esferas de Poder: Libro de Actas. XIII. Santiago de Compostela: Ibercom, 3559-3571.

RÚAS-ARAÚJO, José; CUESTA-MORALES, Pedro y VILA-SOBRINO, Xosé Antón (2016). “Study of political campaign ads from Ecuador employing heart rate variability (Hrv)”, en Á. ROCHA; A. CORREIA; H. ADELI; L. REIS; y M. MENDOÇA (eds.) Advances in Intelligent Systems and Computing, 445, Nueva York: Springer, 421–430. https://doi.org/10.1007/978-3-319-31307-8_44

RUSSELL, James A. y BARRETT, Lisa Feldman (1999). “Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant”. Journal of Personality and Social Psychology, 76(5), 805–819. https://doi.org/10.1037/0022-3514.76.5.805

SHU, Lin; XIE, Jinyan; YANG, Mingyue; LI, Ziyi; LI, Zhenqi; LIAO, Dan; XU, Xiangmin y YANG, Xinyi (2018). “A Review of Emotion Recognition Using Physiological Signals”. Sensors, 18(7). https://doi.org/10.3390/S18072074

SMITH, Kevin B. y WARREN, Clarisse (2020). “Physiology predicts ideology. Or does it? The current state of political psychophysiology research”. Current Opinion in Behavioral Sciences, 34, 88–93. https://doi.org/10.1016/J.COBEHA.2020.01.001

SUZUKI, Kei; LAOHAKANGVALVIT, T.ipporn; MATSUBARA, Ryota y SUGAYA, Midori (2021). “Constructing an Emotion Estimation Model Based on EEG/HRV Indexes Using Feature Extraction and Feature Selection Algorithms”. Sensors 21(9), 2910. https://doi.org/10.3390/S21092910

WAGNER, Michael W.; DEPPE, Kristen D.; JACOBS, Carly M.; FRIESEN, Amanda; SMITH, Kevin B. y HIBBING, John R. (2015). “Beyond Survey Self-Reports: Using Physiology to Tap Political Orientations”. International Journal of Public Opinion Research, 27(3), 303–317. https://doi.org/10.1093/IJPOR/EDU036

ZHANG, Jianhua; YIN, Zhong; CHEN, Peng y NICHELE, Stefano (2020). “Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review”. Information Fusion, 59, 103–126. https://doi.org/10.1016/j.inffus.2020.01.011