Main Article Content

1
Universidad de Granada
Spain
Ángel Cazorla Martín
Universidad de Granada
Spain
https://orcid.org/0009-0003-2106-7773
1
Universidad de Granada
Spain
Vol 23 No 1 (2024): Revista RIPS, Articles
DOI: https://doi.org/10.15304/rips.23.1.9796
Submitted: 18-03-2024 Published: 27-06-2024
Copyright How to Cite

Abstract

This article examines the relevance and limitations of traditional electoral prediction models in the field of Political Science. It is pointed out that conventional methods based on sociodemographic variables are losing accuracy due to misinformation provided by respondents and the shift towards politainment. The need to search for new approaches incorporating emotion measurement, such as George Marcus's affective intelligence theory, supported by psychophysiological measurement techniques, is highlighted. Evidence is presented from studies that have used electroencephalography (EEG) and heart rate variability (HRV) to predict voting behaviour more accurately than traditional methods. The creation of a new model combining self-report and physiological response is proposed to improve political behaviour prediction.

Cited by

Article Details

References

ANSOLABEHERE, Stephen y HERSH, Eitan (2012). “Validation: What Big Data Reveal About Survey Misreporting and the Real Electorate”. Poitical Analysis, 20(4), 437-459. https://doi.org/10.1093/pan/mps023

BRADLEY, Margaret M. y LANG, Peter J. (1994). “Measuring emotion: The self-assessment manikin and the semantic differential”. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59. https://doi.org/10.1016/0005-7916(94)90063-9

CAMPBELL, Angus; CONVERSE, Philip E.; MILLER, Warren E.; y STOKES, Donald E. (1960). The American voter, New York: John Wiley and sons.

DIMBERG, Ulf (1990). “Facial electromyography and emotional reactions”. Psychophysiology, 27(5), 481–494. https://doi.org/10.1111/J.1469-8986.1990.TB01962.X

DODD, Michael D.; BALZER, Amanda; JACOBS, Carly M.; GRUSZCZYNSKI, Michael W.; SMITH, Kevin B. y HIBBING, John R. (2012). “The political left rolls with the good and the political right confronts the bad: connecting physiology and cognition to preferences” Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1589), 640-649. https://doi.org/10.1098/RSTB.2011.0268

DOMÍNGUEZ-JIMÉNEZ, Juan Antonio; CAMPO-LANDINES, Kiara; MARTÍNEZ-SANTOS, Juan Carlos; DELAHOZ, Enrique José y CONTRERAS-ORTIZ, Sonia Helena (2020). “A machine learning model for emotion recognition from physiological signals”. Biomedical Signal Processing and Control, 55, 101646. https://doi.org/10.1016/J.BSPC.2019.101646

DOWNS, Anthony (1957). An economic theory of democracy, Inglaterra: Harper & Row.

EKMAN, Paul (1992). “An Argument for Basic Emotions”. Cognition and Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068

EKMAN, Paul y FRIESEN, Wallace V. (1978). “Facial action coding system”. Environmental Psychology & Nonverbal Behavior. https://doi.org/10.1037/t27734-000

EKMAN, Paul y ROSENBERG, Erika L. (2005). What the face reveals: basic and applied studies of spontaneous expression using the facial action coding system (FACS), Oxford: Oxford University Press.

GALLI, Giulia; ANGELUCCI, Davide; BODE, Stefan; DE GIORGI, Chiara; DE SIO, Lorenzo; PAPARO, Aldo; Di LORENZO, Giorgio y BETTI, Viviana (2021). “Early EEG responses to pre-electoral survey items reflect political attitudes and predict voting behavior”. Scientific Reports 2021, 11(1), 1–13. https://doi.org/10.1038/s41598-021-96193-y

HERMANN, Margaret G. (1986). Political psychology, San Francisco: Jossey-Bass.

HILL, Seth J. y TAUSANOVITCH, Chris (2015). “A Disconnect in Representation? Comparison of Trends in Congressional and Public Polarization”. The Journal of Politis, 77(4), 1058–1075. https://doi.org/10.1086/682398

KLEINGINNA, Paul R. y KLEINGINNA, Anne M. (1981). “A categorized list of emotion definitions, with suggestions for a consensual definition”. Motivation and Emotion, 5(4), 345–379. https://doi.org/10.1007/BF00992553

KOTAK, Aditya y MOORE, Don A. (2020). “Public Election Polls are 95% Confident but only 60% Accurate”. Behavioral Science and Policy https://doi.org/10.31234/osf.io/rj643

LADD, Jonathan McDondald y LENZ, Gabriel S. (2008). Reassessing the Role of Anxiety in Vote Choice. Political Psychology, 29(2), 275–296. https://doi.org/10.1111/j.1467-9221.2008.00626.x

LANDIS, Carney y HUNT, William Alvin (1939). The startle pattern, New York: Farrar & Rinehart.

LANG, Peter J. (1994). The Varieties of Emotional Experience: A Meditation on James-Lange Theory. Psychological Review, 101(2), 211–221. https://doi.org/10.1037/0033-295X.101.2.211

LAZARSFELD, Paul F.; BERELSON, Bernard y Gaudet, Hazel (1944). The people’s choice: how the voters makes up his mind in a presidential campaign, New York: Columbia University Press.

LAZARUS, Richard S. (1991). Emotion and Adaptation. Oxford: Oxford University Press.

LIPSET, Seymour Martin. (1961). Political man: the social bases of politics. Baltimore: Johns Hopkins University Press.

LODGE, Milton y TABER, Charles (2000). “Three Steps toward a Theory of Motivated Political Reasonin”, en A. LUPIA y M. D. MCCUBBINS (eds.) Elements of Reason. Cognition, choice and the bounds of rationality, Cambridge: Cambridge University Press,183–213. https://doi.org/10.1017/CBO9780511805813.009

MACKUEN, Michael; MARCUS, George E. y NEUMAN, W. Russell (2000). Affective Intelligence and Political Judgment, Chicago: University of Chicago Press.

MARCUS, George E.; VALENTINO, Nicholas A.; VASILOPOULOS, Pavlos y FOUCAULT, Martial (2019). “Applying the Theory of Affective Intelligence to Support for Authoritarian Policies and Parties”. Political Psychology, 40(S1), 109–139. https://doi.org/10.1111/POPS.12571

MAUSS, Iris B. y ROBINSON, Michael D. (2009). “Measures of emotion: A review”. Cognition & Emotion, 23(2), 209–237. https://doi.org/10.1080/02699930802204677

MERTON, Robert (1968). Contributions to the Theory of Reference Group Behaviour, Nueva York: The Free Press.

MILLER, Jon, KALMBACH, Jason, WOODS, Logan & CEPURAN, Claire. (2021). “The Accuracy and Value of Voter Validation in National Surveys: Insights from Longitudinal and Cross-Sectional Studies”. Political Research Quarterly, 74(2), 332–347. https://doi.org/10.1177/1065912920903432/

MO GROBA, Diego (2021). Impacto de las emociones en la decisión de voto: hacia una perspectiva emocional del comportamiento electoral. Universidad de Santiago de Compostela: Tesis Doctoral.

MONTERO, Maritza y DORNA, Alejandro (1998). “La psicologia politica contemporánea”. Revista Latinoamericana de Psicología, 25(1), 21–43.

OXLEY, Douglas R.; SMITH, Kevin B.; ALFORD, John R.; HIBBING, Matthew V.; MILLER, Jennifer L.; SCALORA, Mario; HATEMI, Peter K. y HIBBING, John R. (2008). “Political attitudes vary with physiological traits”. Science, 321(5896), 1667–1670. https://doi.org/10.1126/SCIENCE.1157627

PANKSEPP, Jaak (1992). “A critical role for “affective neuroscience” in resolving what is basic about basic emotions”. Psychological Review, 99(3), 554–560. https://doi.org/10.1037//0033-295X.99.3.554

PINTO, Gisela; CARVALHO, João M.; BARROS, Filipa; SOARES, Sandra C.; PINHO, Armando J. y BRÁS, Susana (2020). “Multimodal Emotion Evaluation: A Physiological Model for Cost-Effective Emotion Classification”. Sensors 2020, 20(12), 3510. https://doi.org/10.3390/S20123510

PLUTCHIK, Robert (1958). “Outlines of a new theory of emotion”. Transactions of the New York Academy of Sciences, 20(5), 394–403. https://doi.org/10.1111/J.2164-0947.1958.TB00600.X

PLUTCHIK, Robert (1980). “A general psychoevolutionary theory of emotion”, en R. PLUTCHIK y H. KELLERMAN (eds.), Theories of Emotion, Cambridge: Academic Press, 3–33. https://doi.org/10.1016/B978-0-12-558701-3.50007-7

PLUTCHIK, Robert (1990). “Emotions and psychotherapy: A psychoevolutionary perspective”, en R. PLUTCHIK Y h. KELLERMAN (eds.) Emotion, psychopathology, and psychotherapy, Cambridge: Academic Press, 3–41.

RENSHON, Jonathan; LEE, Jooa Julia y TINGLEY, Dustin (2015). “Physiological Arousal and Political Beliefs”. Political Psychology, 36(5), 569–585. https://doi.org/10.1111/pops.12173

ROBINSON, Michael D. y CLORE, Gerald L (2002). “Episodic and semantic knowledge in emotional self-report: Evidence for two judgment processes”. Journal of Personality and Social Psychology, 83, 198–215. https://doi.org/10.1037/0022-3514.83.1.198

RODRÍGUEZ LIÑARES, Leandro; CUESTA, Pedro; MÉNDEZ, Arturo J.; VILA, Xosé A. y LADO, María J. (2013). “¿Afectan los Spots Electorales al Ritmo Cardíaco?”. Comunicación, Cultura y Esferas de Poder: Libro de Actas. XIII. Santiago de Compostela: Ibercom, 3559-3571.

RÚAS-ARAÚJO, José; CUESTA-MORALES, Pedro y VILA-SOBRINO, Xosé Antón (2016). “Study of political campaign ads from Ecuador employing heart rate variability (Hrv)”, en Á. ROCHA; A. CORREIA; H. ADELI; L. REIS; y M. MENDOÇA (eds.) Advances in Intelligent Systems and Computing, 445, Nueva York: Springer, 421–430. https://doi.org/10.1007/978-3-319-31307-8_44

RUSSELL, James A. y BARRETT, Lisa Feldman (1999). “Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant”. Journal of Personality and Social Psychology, 76(5), 805–819. https://doi.org/10.1037/0022-3514.76.5.805

SHU, Lin; XIE, Jinyan; YANG, Mingyue; LI, Ziyi; LI, Zhenqi; LIAO, Dan; XU, Xiangmin y YANG, Xinyi (2018). “A Review of Emotion Recognition Using Physiological Signals”. Sensors, 18(7). https://doi.org/10.3390/S18072074

SMITH, Kevin B. y WARREN, Clarisse (2020). “Physiology predicts ideology. Or does it? The current state of political psychophysiology research”. Current Opinion in Behavioral Sciences, 34, 88–93. https://doi.org/10.1016/J.COBEHA.2020.01.001

SUZUKI, Kei; LAOHAKANGVALVIT, T.ipporn; MATSUBARA, Ryota y SUGAYA, Midori (2021). “Constructing an Emotion Estimation Model Based on EEG/HRV Indexes Using Feature Extraction and Feature Selection Algorithms”. Sensors 21(9), 2910. https://doi.org/10.3390/S21092910

WAGNER, Michael W.; DEPPE, Kristen D.; JACOBS, Carly M.; FRIESEN, Amanda; SMITH, Kevin B. y HIBBING, John R. (2015). “Beyond Survey Self-Reports: Using Physiology to Tap Political Orientations”. International Journal of Public Opinion Research, 27(3), 303–317. https://doi.org/10.1093/IJPOR/EDU036

ZHANG, Jianhua; YIN, Zhong; CHEN, Peng y NICHELE, Stefano (2020). “Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review”. Information Fusion, 59, 103–126. https://doi.org/10.1016/j.inffus.2020.01.011