First record of sea lice (*Caligus belones*) on garfish (*Belone belone*) in the Iberian Peninsula

Primer registro del piojo de mar (*Caligus belones*) parasitando la aguja de mar (*Belone belone*) en la península ibérica

1*Javier Sánchez-Hernández and Javier Souto*
2

1 Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, Spain
2 Institut für Paläontologie, Universität Wien, Vienna, Austria
* javier.sanchez@usc.es; javier.souto-derungs@univie.ac.at
*Corresponding author

(Recibido: 26/07/2016; Aceptado: 30/09/2016; Publicado on-line: 06/10/2016)

Abstract

A novel observation of sea lice (*Caligus belones*) on garfish (*Belone belone*) is described from the Galician coast (NW Spain), being the first time for southern Europe. This finding is important as there are few worldwide records of sea lice (*C. belones*) parasitizing garfish.

Keywords: ectoparasites, fish hosts, parasitic copepod

Resumen

Se describe una nueva observación del piojo de mar (*Caligus belones*) parasitando la aguja de mar (*Belone belone*) en la costa de Galicia (noroeste de España), siendo la primera vez para el sur de Europa. Este hallazgo es importante, ya que hay pocos registros en todo el mundo del piojo de mar (*C. belones*) parasitizando la aguja de mar.

Palabras clave: ectoparásitos, hospedadores marinos, copépodo parasito

Garfish *Belone belone* Linnaeus 1761 is a pelagic marine fish species distributed in waters surrounding Europe and North Africa, including the Atlantic Ocean, the Mediterranean Sea and the Black Sea. The species can be a commercially important pelagic fish in some areas of Europe, as the Black Sea (*Samsun et al.*, 2016). In the Iberian Peninsula, it is not usually a target for professional and recreational fishing, but the amount of captures is not contemptible; in the northwest of Spain (Galicia) about 76.7 tonnes were captured and sold in 2015 (data from the Xunta de Galicia—Consellería do mar; http://www.pescadegalicia.gal/). Over the last decades, there has been a notable increasing in the knowledge of the biology of garfish (e.g., *Samsun et al.*, 2006 and references therein). Despite this research progress, their parasite composition remains unknown and may be far from complete. In this regard, previous works have aimed to describe the parasitic fauna of garfish in detail (e.g., *Grabda, 1981; Dorman & Holmes, 1991; Özer & Yurakhno 2013; Chåari*...
et al., 2015), but few have reported the observation of sea lice on the species (e.g., Dorman, 1991; Dorman & Holmes, 1991; Koch et al., 2014). Sea lice species are external parasitic copepods of the family Caligidae characterised by the presence of a flattened cephalothorax, typical of this group, which is used as attachment organ (Kabata, 1992). Sea lice are often found parasitizing anadromous salmonid populations during their marine growth phase (e.g., Torrissen et al., 2013; Thorstad et al., 2015), and marine fish species (e.g., Nawasaga, 2011). Of the entire recognised genera of Caligidae, only the Caligus genus has been found on garfish so far. In this regard, four species of the Caligus genus have been identified on garfish: Caligus belones Krøyer, 1863, Caligus elongatus von Nordmann, 1832, Caligus diaphanus von Nordmann, 1982 and Caligus pelamydis Krøyer, 1863 (Cressey & Collette, 1970; Dorman, 1991; Dorman & Holmes, 1991; Kabata, 1992; Holmes, 1998; Koch et al., 2014). It should be noted that the specimens assigned to C. belones from Coryphaena equiselis Linnaeus, 1758 by Wilson (1905) were described as a new species, Caligus wilsoni Delamare Deboutteville & Nunes-Ruivo, 1958; species collected and re-described, years later, from Lutjanus griseus (Linnaeus, 1758) by Cressey (1991). Overall, sea lice (especially Lepeophtheirus salmonis Krøyer, 1837) are well known to cause serious deleterious effects and severe economic losses in some fish species like Atlantic salmon (Salmo salar Linnaeus, 1758) and sea trout (Salmo trutta Linnaeus, 1758) (e.g., Torrissen et al., 2013 and references therein). However, more information about sea lice infestation patterns on marine fish species is required to understand sea lice epidemiology in the wild.

On 15 May 2016, a local fisherman captured a garfish specimen using a spinning lure in the Gabeiras islands (NW Spain, 43.5108°N 008.3386°W). The specimen was brought to the laboratory for visual inspection. Parasites were detected and counted. Intensity (number of parasites per infected host) was determined recording the presence of sea lice in seven body parts (operculum, pectoral fin, dorsal fin, pelvic fin, anal fin, caudal fin and body) (Table I).

<table>
<thead>
<tr>
<th></th>
<th>Operculum</th>
<th>Pectoral fin</th>
<th>Dorsal fin</th>
<th>Pelvic fin</th>
<th>Anal fin</th>
<th>Caudal fin</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Left</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

Table I. Number of parasites (Caligus belones) distributed on the body surface of garfish (Belone belone).

Collected parasites were morphologically identified as C. belones based on Dorman & Holmes (1991) and Kabata (1992). We paid attention to the diagnosis characters to identify this species, i.e., the shape and proportion of the genital segment, the shape and the proximity of the caudal rami, the armature of the second exopod segment of the first leg, the armature of the fourth leg, and the shape of the external furca (see Dorman & Holmes, 1991 for illustrations of the diagnosis characters). The specimen was dissected to determine sex and diet composition. The specimen was a male of 880 mm length (total length) and no food remains were found in the stomach. A total of 51 parasites were found. No parasites on dorsal, pelvic, anal and caudal fins were found. By contrast, the other body parts showed parasite intensities between three (left pectoral fin) and sixteen (right operculum). The remaining intensities are given in Table I. Skin lesions were evident in the parasitized fish (Figure 1), suggesting that the specimen might be more susceptible to secondary infections (Boxaspen, 2006). In fact, heavy infections of sea lice can reduce growth, fecundity, and survival of their hosts (Boxaspen, 2006; Thorstad et al., 2015).

This confirmation of sea lice (here C. belones) parasitizing garfish is, to the best of our knowledge, the first record in the Iberian Peninsula and increases the number of known territories to five. In this sense, C. belones has been reported from garfish in German (Cressey & Collette, 1970), Irish (Dorman & Holmes, 1991), Swedish (Dorman, 1991), Dutch (Koch et al., 2014) and Spanish (present study) waters. This finding is important as there are few worldwide records of Caligus spp. parasitizing garfish (see above literature) as well as other belonid fish species (e.g., Cressey & Collette, 1970; Tavares et al., 2004; Châari & Neifar, 2015). From fishery management and
conservation perspectives, future monitoring programmes should take into account parasites like sea lice on wild marine fish species in order to improve the knowledge about their epidemiology and spatiotemporal variation in infestations levels in nature.

ACKNOWLEDGEMENTS

We appreciate constructive comments from two anonymous referees, which considerably improved the quality of the manuscript. We would like to thank to Dr. Marcos Pérez Señarís (USC) for taking the sea lice photos. J. Sánchez-Hernández was supported by a postdoctoral grant from the Galician Plan for Research, Innovation, and Growth 2011-2015 (Plan I2C, Xunta de Galicia).

REFERENCES

